
Pol. J. Environ. Stud. Vol. 27, No. 1 (2018), 95-107

              Original Research             

           Optimizing the DRASTIC Method for Nitrate 
Pollution in Groundwater Vulnerability 

Assessments: a Case Study in China 

Haiyang He1, 2, 3, Xuguang Li3, Xiao Li3, Jian Cui3, 
Wenjing Zhang1, 2*, Wei Xu4

1Key Laboratory of Groundwater Resources and Environment, Ministry of Education, 
Jilin University, Changchun 130021, China

2College of Environment and Resources, Jilin University, Changchun 130021, China
3 Shenyang Center China Geological Survey Bureau, Shenyang 110034, China

4College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
 

Received: 6 May 2017
Accepted: 21 June 2017

Abstract

Groundwater vulnerability assessments, using DRASTIC, are important and useful tools for 
groundwater pollution prevention and control. The DRASTIC method, however, is not appropriate for 
accurate specifi c vulnerability assessments where nitrate concentrations are high. A new method has 
been developed that retains the basic structure of DRASTIC while adding or subtracting parameters, 
and modifying the parameter ratings and weightings. The resulting DRACILM model was used to assess 
vulnerability to nitrate pollution in the West Liaohe Plain and as a basis for vulnerability mapping. The 
accuracy, appropriateness, and reliability of the vulnerability mapping were analyzed using a group of 
integrated indicators, such as correlation, ANOVA F-statistics, and single-parameter sensitivity analysis. 
The correlation between vulnerability class and the concentration of NO3-N in the DRACILM model 
improved to 0.649, which was 40.6% higher than that obtained by DRASTIC. The ANOVA F-statistic was 
27.71, which indicated a lower overlap between the mean values of nitrates in the different vulnerability 
classes. The single-parameter sensitivity analysis revealed that land use type exhibited the highest and 
hydraulic conductivity the lowest effective weighting values. The vulnerability maps by DRACILM model 
could assist planners and government decision-makers with preliminary investigations into planning 
water protection projects or establishing management scenarios for water resource quality. 
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Introduction

The fi rst use of the vulnerability concept in 
hydrogeology was in 1970 [1]. Since the 1980s, various 
models and approaches for vulnerability assessment 
and mapping have been developed and tested [2-3]. 
Groundwater vulnerability can be defi ned by intrinsic 
vulnerability or specifi c vulnerability [4]. The intrinsic 
vulnerability of an aquifer is the capacity with which 
a contaminant introduced at the ground surface can 
reach and be diffused in groundwater [5]. Specifi c 
vulnerability is the vulnerability of groundwater to 
a particular contaminant or group of contaminants. 
For specifi c vulnerability, specifi c physicochemical 
properties from contaminants are considered [6]. In 
recent years,   specifi c vulnerability has been more widely 
used and is more meaningful than intrinsic vulnerability, 
because intrinsic vulnerability assessments only consider 
natural factors. Therefore, intrinsic vulnerability cannot 
fully take into account actual pollution and the impact of 
human activities such as land use, model of groundwater 
resource yield, and groundwater quality. Land use is used 
in specifi c vulnerability assessments, and makes these 
results more accurate and meaningful [7].

Several approaches exist for assessing groundwater 
vulnerability. They can be grouped into process-
based, statistical, and index-overlay methods [8-11]. 
Vulnerability in the index-overlay method is determined 
by weights, indexes, ranges, and classifi cation. The 
commonly used models for groundwater vulnerability 
are DRASTIC, SINTACS, GOD, AVI, SYNTACS, SI, 
and EPIK [12-13]. The most widely used method for 
vulnerability evaluation is DRASTIC because of its ease 
of use, minimal data requirements, and clear exposition 
of groundwater vulnerability [14]. The method has been 
widely used for regional vulnerability assessments in 
many countries such as the USA [15-16], China [17-18], 
Korea [19], Canada [20], India [21], Turkey [22], Tunisia 
[23], South Africa [24-25], and the   Ivory Coast [26].

DRASTIC, as with other similar index methods, 
has many disadvantages: 1) so many variables are 
factored into the fi nal index that critical parameters 
in groundwater vulnerability may be masked by other 
parameters that have no bearing on vulnerability for 
a particular setting [27], 2) the results overestimate the 
vulnerability of porous media aquifers compared with 
aquifers in fractured media [28], and 3) the selection of 
the parameters is based on qualitative judgment and not 
quantitative studies [29-30]. D  espite these disadvantages, 
if the method is improved by modifying   factors and 
weights, it can be usefully deployed for continental-scale 
assessments of groundwater vulnerability [31].   Most of 
the studies which have improved the DRASTIC method 
according to the NO3-N pollution proposed the subtraction 
of factors to be included in the method or the inclusion 
of additional factors, e.g., land use, irrigation type and 
intensity, groundwater quality and pollution [32]. These 
studies focused on important factors of human activities 
that impacted groundwater vulnerability, but an important 

information model of groundwater resource yield was 
ignored, which determined the strength of human activity. 
The optimized model graded by geometrical interval 
method improved the correlation between vulnerability 
index and nitrate concentration to the order of 0.6698, 
which was 0.4098 higher than that by the DRASTIC 
model [7]. By modifying and optimizing the model, the 
correlation coeffi cient between groundwater pollution 
risk and nitrates concentration was considerably improved 
and rose to 33% higher than the original method [30]. 
The method for groundwater vulnerability assessment 
has been improved signifi cantly from a relatively simple, 
inconstant, and subjective survey to a comprehensive 
and scientifi c quantifi cation evaluation. However, its 
results may be a little inaccurate due to the subjectivity. 
Little research has been conducted to overcome the 
subjectivity of overlay index method systematically. But 
some methods can be used to verify the reliability of 
the results, such as analytical hierarchy process (AHP), 
ANOVA F-statistic and sensitivity analysis, and so on 
[33]. Therefore, the above analysis methods were applied 
to verify the feasibility and accuracy of results obtained 
by the modifi ed DRASTIC model, and to determine the 
main factors of groundwater vulnerability.

In the last 30 years, nitrate has become a major 
source of groundwater pollution in the West Liaohe 
Plain in China [34]. The main sources of nitrate are 
nitrogen fertilizers, domestic sewage, livestock manure, 
and industrial production. Because nitrate is easily 
transported and converted into N species, in some 
groundwater systems nitrate pollution can threaten 
humans and livestock as well as the environment [35]. 
In addition, the concentration of nitrate in groundwater 
is considered an indicator of groundwater quality 
degradation [36]. The drinking water for nearly 50% 
of city residents and 90% of rural residents is supplied 
by groundwater in the study area; for individual cities 
and the surrounding areas, groundwater may be the only 
water source. Therefore, specifi c research on ground-
water vulnerability based on nitrate is essential to 
ensure the quality of groundwater and provide a scientifi c 
basis for the sustainable development of groundwater 
resources.

The objective of this study is to assess a modifi -
cation of the DRASTIC method, which reduced 
several factors and added land use type and model of 
groundwater resource yield, especially to incorporate 
nitrate for a groundwater vulnerability study of the 
West Liaohe Plain. The modifi cation replaces qualitative 
with quantitative parameters such as weightings, 
ratings, and classes, which could be accomplished 
by simple statistical methods to link the mean class 
of each parameter defi ned in the modifi ed model to 
the concentration of NO3-N. ANOVA F-statistic and 
sensitivity analysis applied to test its feasibility and 
accuracy. Groundwater vulnerability maps can be used to 
help formulate the strategies by government and planners 
to prevent groundwater pollution and make better use of 
resources.



97Optimizing the DRASTIC Method...

Materials and Methods

Study Area

   The study area is the West Liaohe Plain, which covers 
an area of approximately 8.77×104 km2 in northeast 
China, and covers parts of Liaoning, Jilin, and the Inner 
Mongolia provinces (Fig. 1).   It is the main area of grain 
production in China, and is known as the “Northern 
Granary.” The overall topography trend of the plain is 
high in the east, west, and north, and low in the south 
and center. The study area has a semi-arid, temperate, 
monsoon, continental climate. The average temperatures 
in summer and winter are 20ºC and -9.8ºC,   respectively, 
and the mean annual temperature is 4.6ºC. The average 
annual rainfall from 1961 to 2014 was 479.5 mm, and 
the average annual evaporation from 1958 to 2014 was 
1,832.4 mm. Precipitation is more concentrated in June, 
July, August, and September, which accounts for more 
than 80% of total annual precipitation. The rivers in the 
study area belong to the Liaohe River system; the upper 
part of the Liaohe system is formed by the Xiliao River, 
and its main tributaries are the LaoHa, Xar Moron, 
Wulijimuren, Jiaolai, Xinkai, and Mengke rivers. The 
middle of the Liaohe system is formed by the Zhaosutai, 
Xiushui, Lama, Qing, and Liu rivers. There are over 20 
reservoirs and lakes in the region.

In the West Liaohe Plain, quaternary unconsolidated 
deposits, including gravels, sands, silt, and mucky silt, 
form a signifi cant unconfi ned aquifer. The depth to 
groundwater is generally 1 to 10 m, and thickness of 
the aquifer is 10 to 50 m while the center was thick 
and the ground thin. The hydrogeological characteristics 
of the area have been researched by geological teams 

from the Geological Survey Institute of Inner Mongolia, 
Jilin, and Liaoning provinces; the aquifers are divided 
into loose rock pore aquifers and fractured bedrock 
aquifers, according to the abundance of the aquifer, 
the pore aquifers can be divided into abundant, moderate, 
and short, whose water yield is higher than 10m3/h·m, 
5-10 m3/h·m and less than 5 m3/h·m, respectively 
(Fig. 2). The aquifer structure of the study area is single, 
and there are few clay layers in the aquifer and the 
groundwater type is mainly phreatic water. Recharge 
takes place by infi ltration of precipitation (mainly 
from May to September), surface water infi ltration and 
irrigation infi ltration. Groundwater discharges toward 
rivers with a relatively low water level. Large areas 
of intense evaporation can discharge large amounts 
of groundwater, and human exploitation, especially 
for cities and towns, is also responsible for signifi cant 

Fig. 1. Location of the study area in China.

Fig. 2. Groundwater types in the study area.
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groundwater discharge. The main groundwater fl ow 
direction is from the west to the east. Based on recharge, 
runoff, and discharge conditions, groundwater can be 
divided into the rainfall infi ltration-evaporation type, 
infi ltration-runoff type, and infi ltration-exploited 
type. In recent years groundwater has been exploited 
in large amounts for agricultural, industrial, animal 
husbandry, and domestic water use: each use accounts 
for 65.1%, 12.4%, 8.7%, and 13.8% of the total water use, 
respectively. The shallow groundwater of the West Liaohe 
Plain has been contaminated during recent decades. The 
main pollution sources of groundwater in the study area 
are   domestic, industrial, and agricultural, and domestic 
pollution sources are mainly domestic sewage and waste 
– especially in large and medium cities with a large 
urban population. Industrial wastewater leakage and 
random discharge in the ditches are the main industrial 
pollution sources, the phenomenon mainly occurred in 
the industrial parks around the cities with the rapidly 
development of the economy in recent years. As the plain 
is the main area of grain production in China, pesticides 
and fertilizers become the main agricultural pollution 
source, and nitrogen fertilizer and organic pesticide 
have the features of over-abundant application, low 
utilization rate, and large loss. There are few clay layers 
in the aquifer, and the depth to groundwater is shallow, 
the aquifer was in a relatively oxidizing environment and 
the amounts of nitrite and ammonium are generally lower 
in the aquifer; therefore, nitrogen is a major pollutant 
with high concentrations and a wide distribution   from 
domestic, industrial, and agricultural pollution.

To ascertain the groundwater quality of the plain, 877 
shallow groundwater samples were collected from June 
2012 to September 2014 – mainly in May to September 
(Fig. 1). Water sampling used the principle of average 
distribution, and sampling density is 1 Group/100 km2. 

Intrinsic Vulnerability

Intrinsic vulnerability assessment is an effective tool 
for describing innate features of specifi c hydrogeological 
conditions that provide some measure of defense against 
external contamination. Intrinsic vulnerability is 
independent of the nature of the specifi c contaminants 
and the contamination scenario and takes into account 
the geological, hydrological, and hydrogeological 
characteristics of an area [37]. The most popular tool 
for assessing intrinsic groundwater vulnerability is the 
DRASTIC model [18], which is based on the following 
seven morphological, hydrological, and hydrogeological 
parameters: depth to groundwater (D), net recharge (R), 
aquifer media (A), soil media (S), topography (T), impact 
of the vadose zone (I), and hydraulic conductivity (C). 
Each parameter is divided into classes with a rating 
value and has a weight based on their importance. 
The groundwater vulnerability assessment using the 
DRASTIC model is based on a numerical ranking that 
considers weights, ranges, and ratings. For each of the 
seven factors, ratings from 1 to 10 and weights from 1 to 

5 are attributed by the contribution of each parameter in 
the groundwater vulnerability. The DRASTIC index (DI) 
[2] is calculated by applying a linear combination of all 
the factors according to Eq. (1):

DI = Dr * Dw + Rr * Rw + Ar * Aw + Sr * Sw + Tr * Tw + Ir * Iw + Cr * Cw     
(1)

…where D, R, A, S, T, I, and C are as defi ned earlier; r is 
the rating for the study area; and w is the weight of each 
   parameter. The raw data that were collected or derived 
from various published reports, drill-holes, and hydro 
meteorology are listed in Table 1.

Intrinsic groundwater vulnerability mapping can be 
graded into several classifi cations:   low, relatively low, 
moderate, relatively high, and high vulnerability to 
potential pollution. The higher the DIs, the greater the 
  intrinsic groundwater vulnerability.

  
Specifi c Vulnerability

In recent years, specifi c vulnerability has been widely 
used for groundwater vulnerability – especially for the 
impact of human factors. In the improvements of the 
DRASTIC model proposed by several researchers, factors 
were subtracted from the model [38] or factors like land 
use or irrigation type and groundwater quality were 
added to the model [39]. DRASTIC has been incorporated 
into other procedures or models, such as DRASIC and 
DRATIL [24, 30]. In this paper, to take into account the 
infl uence of human factors on groundwater vulnerability 
in the West Liaohe Plain, groundwater use (quality and 
quantity), land use type, and model of groundwater 
resource yield are added to the DRASTIC model of 
specifi c vulnerability. Land use types are not contaminant 
indicators in the specifi c groundwater vulnerability 
assessment, but are major factors affecting the fate and 

Parameters Data so  urces Scale of map 
prepared

D 1134 monitoring wells, 
2012-14 1:250,000

R precipitation and irrigation 
data from 2012-14 1:250,000

A 766 hydrogeological drill-hole 
data, 2007-09 1:250,000

S 828 particle size analysis of 
soil samples, 2012-14 1:250,000

T 766 hydrogeological drill-hole 
data, 2007-09 1:250,000

I 766 hydrogeological drill-hole 
data, 2007-09 1:250,000

C 766 hydrogeological drill-hole 
data, 2007-09 1:250,000

Table 1.   Data sources for the seven parameter data layers.
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transformation of contaminants such as nitrates in the 
vadose zone and the aquifer; the behavior of pollutants 
in the vadose zone and the aquifer may differ according 
to the different types of land use. Models of groundwater 
resource yield are not an indicator of groundwater 
contamination and vulnerability, but are important 
factors determining the amount of exploitation.   Usually, 
intensive human activities and groundwater exploitation 
not only generate more pollutants, but also increase 
the recharge amounts, and therefore the possibility that 
contaminants will reach the aquifer is greater.   Thus, 
land use type and models of groundwater resource yield 
should be considered as groundwater vulnerability 
parameters to make the specifi c vulnerability result more 
meaningful.

In some cases, a correlation between the results of 
the model and actual pollution occurrence were used 
to validate and verify the model’s performance. Nitrate 
was widely used to check the models for that purpose. 
Therefore, the methodology developed in this paper 
for the evaluation of specifi c vulnerability uses nitrate 
concentration to match each parameter, and then mo-
difi es them with various transformations and addi-
tions to improve specifi c vulnerability. The effective 
criterion for these transformations is the correlation 
coeffi cient between the parameter value and nitrate 
concentration at a point. Other researchers have verifi ed 
the correlation between intrinsic vulnerability and actual 
pollution occurrence defi ned by nitrate concentrations 
[29-30].

The calculation process and meanings of each index 
of specifi c vulnerability models are the same as in the 
above DRASTIC model, but the ratings and weights 
were modifi ed by the correlation coeffi cient, and the 
groundwater vulnerability was recalculated.

Statistical Methods

Correlation Factor

The correlation between nitrate concentrations and 
groundwater vulnerability has been used as an indicator 
of the reliability and accuracy of the applied methods 
[29-32]. The reliability of the correlation is based on the 
groundwater samples (a point measurement) according 
to the specifi c characteristics of the area, such as   aquifer 
media, land use type, and net recharge.

The   correlation can be calculated by Pearson’s r 
correlation coeffi cient and Spearman’s rank correlation 
factor (ρ). Pearson’s correlation has been used to validate 
the weighting, rating, and parameter class range of the 
groundwater vulnerability with two variables and a 
large sample size [40].   Pearson’s r was used to modify 
the weights and ratings of the parameters, and determine 
the grading method of the groundwater vulnerability. 
Therefore, Pearson’s r correlation method can be applied   
as follows:

            (2)

…where rX,Y is the correlation coeffi cient, N is the sample 
size, X is the nitrate concentration, and Y is the rating of 
the parameter, such as land use, aquifer type, and depth of 
groundwater. The greater rX,Y , the stronger the correlation.

ANOVA F-statistic

Analysis of F-statistics, which are the ratios of 
the variability between groups compared with the 
variability within groups based on the signifi cance test 
of regression coeffi cients to judge the fi tting degree of 
multivariate linear regression [41], was used to verify the 
overlap between nitrate concentrations and groundwater 
vulnerability classes. The larger the ANOVA F-statistic, 
the less the overlap between the nitrate concentrations 
in the different vulnerability classes [40]. The variance 
(ANOVA) F-statistic can be calculated by Eq. (3).

                     (3)

…where MST is the mean square and MSE is the mean 
square error. SST and SSE are the sum of squares for 
treatment and the sum of squares for error, respectively, 
and k−1 and n−k are the freedom degree for treatment and 
freedom degree for error, respectively.

Sensitivity Analysis

  A high number of input data layers were used in 
the DRASTIC model. This was regarded as a major 
advantage; the larger the number of data layers, the smaller 
the impact of errors or uncertainties of the individual 
parameters on the fi nal output [37-38]. Sensitivity ana-
lysis provides information on the infl uence of the ratings 
and the weights assigned to each of the factors considered 
in the model to judge the signifi cance of the subjective 
elements. Two sensitivity analysis tests can be performed: 
the map removal sensitivity analysis introduced by 
Lodwick et al. [42], and the single-parameter sensitivity 
analysis introduced by Napolitano and Fabbri [43]. In 
this study, the single-parameter sensitivity analysis 
was chosen to evaluate the impact of each DRASTIC 
parameter on the vulnerability index by comparing their 
effective weights with their theoretical weights [44]. 
The effective weight of each parameter is calculated as 
follows:

                (4)

…where W is the effective weight of each parameter, 
Pr and Pw are the rating value and weight of each 
parameter, respectively, and DI is the overall vulnerability 
index.
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Results and Discussion

Applying the DRASTIC Model to Intrinsic 
Vulnerability 

An intrinsic vulnerability map of the West Liaohe 
Plain was created using DRASTIC. Data sources are 
shown in Table 1. The weights, ratings, and values of 
vulnerability indexes have been complied with the values 
given by Aller et al. [2]. The vulnerability index was 
calculated on the platform of ArcGIS.

The intrinsic vulnerability index (DI) in the West 
Liaohe Plain was 57-173 and was divided into four 
classes: low, relatively low, moderate, and relatively high 
(Fig. 3). The western parts of the plain have a relatively 
high vulnerability class, meaning they are more easily 
polluted than the other areas by external contamination; 
the main reasons for this are the shallow groundwater 
table, high hydraulic conductivity, or the sand and gravel 
media in the aquifer and vadose zone. In the central and 
southeastern area of the plain, the vulnerability class 
is moderate because of either the moderately shallow 
groundwater table or high hydraulic conductivity 
and vadose zone. The relatively low areas are widely 
distributed in the plain as a result of a deep groundwater 
table or the hydrogeological characteristics of the shale 
and sandstone media of the aquifer, and of the vadose 
zone (mainly sandy loam or loam). The low-vulnerability 
areas are somewhat scattered; in the central, northern, and 
northeastern areas of the plain, the low classifi cation is 
caused by the slower velocity of groundwater movement, 
the relatively closed environment, and increased depth.

Validating the Relationship between Intrinsic 
Vulnerability and Nitrate

The correlation between the vulnerability index and 
point nitrate concentration values was used to validate 
the relationship between intrinsic vulnerability and 
actual pollution. The map of NO3-N concentrations for 
shallow groundwater (Fig. 4) was based on 877 shallow 

groundwater samples collected from 2012 to 2014 – 
mainly in May to September. Fig. 4 shows that the 
concentrations of NO3-N were divided into fi ve categories 
according to the quality standards for groundwater in 
China (www.standardcn.com). NO3-N in the study area 
is mainly from domestic, industrial, and agricultural 
pollution. Higher nitrate concentrations were found in the 
east, west, and south of the study area, and the intensity 
of human activities in the regions were larger than others 
with larger urban populations, more industrial activities, 
and agricultural production; lower concentrations were 
found in the north and middle of the study areas, because 
the main types of land use are grassland, woodland, and 
wasteland, while urban areas and farmland are small, the 
concentration of NO3-N was lower. The proportions of 
each of the fi ve categories of the total, from low to high, 
were 33.07%, 16.13%, 28.24%, 7.39%, and 15.16%. The 
maximum, minimum, and average concentrations of 
NO3-N were 117.32 mg/L, 0.004 mg/L, and 11.76 mg/L, 
respectively, and the median is 0.79 mg/L. 

Pearson’s r correlation between the vulnerability 
index and nitrate concentration values was only 0.243, 
which was a very low correlation. By comparing Figs 3 
and 4, it can be seen that higher intrinsic vulnerability 
sometimes corresponds to lower NO3-N concentrations 
and sometimes the opposite. The conclusion from these 
comparisons and observations is that the DRASTIC 
results do not refl ect actual groundwater vulnerability, 
and the model needs to be improved if it is to be used 
to research actual groundwater pollution. Using previous 
research, and the characteristics of the study area, a 
methodology was developed to incorporate nitrate 
into groundwater vulnerability by retaining the basic 
structure of the DRASTIC model and optimizing it with 
various transformations and additions. The optimization 
of the methodology assumed: 1) the index system needs 
to be rebuilt by adding or subtracting   parameters, 2) 
the rating scale of each parameter   needs to be revised, 
3) the weights of the parameters need to be revised, and 
4) the most appropriate method must be determined and 
selected.

Fig. 3. Map of intrinsic vulnerability based on DRASTIC. Fig. 4. Concentrations of NO3-N in shallow groundwater.
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Optimizing the DRASTIC Model for Specifi c 
Vulnerability to Nitrate

Rebuilding the Index System by Adding Parameters

The effect of human activities on groundwater 
vulnerability is mainly manifested in its quality and 
quantity aspects, such as pollution and over-exploitation. 
Based on the above study of specifi c vulnerability 
in the West Liaohe Plain, land use type and   models 
of groundwater resource yield can be considered 
groundwater vulnerability parameters. The index system 
of the new model to evaluate groundwater vulnerability 
to nitrate pollution comprises depth to groundwater 
(D), net recharge (R), aquifer media (A), soil media 
(S), topography (T),   impact of the vadose zone (I), 
hydraulic conductivity (C), land use type (L), and   model 
of groundwater resource yield (M). Therefore, the new 
model was named DRASTIC-LM. The rating scales 
of D, R, A, S, T, I, and C were the same as those in the 
original DRASTIC model [2]. Land use type and the 
groundwater resource yield model have different effects 
on groundwater vulnerability in different study areas, and 
specifi c vulnerability assessment needs-dedicated rating 
scales. The rating scales for land use type and model 
of groundwater resource yield (Table 2) were based on 
the results of Huan et al. [7], Li and Merchant [45], and 
Panagopoulos et al. [30]. The weights used for D, R, A, S, 
T, I, C were 5, 4, 3, 2, 1, 5, and 3. Because of the importance 
of land use type   and model of groundwater resource yield 
in refl ecting human activities, their weights were set to 
5 and 4, respectively. The greater the intensity of human 
activity, the higher the rating scales and weights.

Specifi c vulnerability to nitrate was assessed by 
the rebuilt DRASTIC-LM model. Fig. 5 shows that the 
area of relatively high vulnerability class is larger than 
that in the intrinsic vulnerability assessment; it occurs 
mainly in the southeast of the study area, where the 
concentration of NO3-N is also higher. The distribution 
rule in the other regions did not fi t the concentration of 
NO3-N well. Pearson’s correlation factor between the 

vulnerability index and the concentration of   NO3-N 
increased to 0.386, which was larger than that obtained 
by the initial DRASTIC model, but still small. To improve 
the reliability of the specifi c vulnerability assessment by 
the rebuilt DRASTIC-LM model, the rating scale of each 
parameter needs to be revised based on their relationship 
with concentrations of NO3-N.

  
Revising the Rating Scale of Each Parameter

The most effective way to improve the accuracy 
of results of the specifi c vulnerability evaluation is to 
increase the rationality of the rating scale. Revising the 
rating scales can be accomplished by simple statistical 
methods to link the mean class of each parameter defi ned 
in the DRASTIC-LM model to the concentration of 
NO3-N  .

Classes of each parameter were grouped for these 
cases, while for noncontinuous parameters (parameters 
with discrete classes), such as aquifer media, vadose 
zone type, soil type, and land use type, all the categories 
existing in the area were maintained regardless of 
statistical diversity. The original and modifi ed rating 
values of the DRASTIC-LM parameters and the average 

  Fig. 5. Map of specifi c vulnerability based on DRASTIC-LM.

Land use type   Model of groundwater 
resource yield

Types Va  lue Range 
(m3/a.km2) Value

Forest, grassland 2 <3 1

Paddy fi eld 4 3-5 3

Surface water, 
upland fi eld 6 5-10 5

Urban fabric 8 10-20 7

Industrial land 10 20-30 9

Table 2. Rating scales for land use types and model of 
groundwater resource yield.

Fig. 6. Map of specifi c vulnerability based on modifi ed 
DRASTIC-LM (optimized by revising the rating scale).
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nitrate concentrations are shown in Table 3. Modifi ed 
rating values were derived using the mean nitrate 
concentrations of each class reduced to a 10-grade scale. 
Because the original rating values of net recharge (4) and 
hydraulic conductivity (5) were smaller than those of 
other parameters (9 and 10), the modifi ed rating values 
have been revised appropriately to 5 and 7. Although the 
modifi ed rating is not on a 10-grade scale, the result is 
more reasonable and reliable [45].

From Table 3 we can see that in all the continuous 
parameters (depth to groundwater, net recharge, 
topography, hydraulic conductivity, and modeled 
groundwater resource yield), the mean nitrate 
concentrations follow the same ascending or descending 
trend as the respective natural range values, and the relative 
factor rates for each class. Following the revision of the 

rating scales, the applied modifi ed DRASTIC-LM model 
increases its correlation with the nitrate concentrations 
to r = 0.513 (Fig. 6). The   r value is 0.127 greater than 
the original DRASTIC-LM model, but the improvement 
in correlation is not obvious from Fig. 5 to Fig. 6; in 
some zones there is no agreement with concentrations. 
The vulnerability in some grassland and forest areas 
was moderate, while the vulnerability in some urban 
and industrial areas was relatively low. To improve the 
correlation further, a revision of the parameter weights 
might be needed.

  Revising the   Parameter Weights

The weights of the parameters represent their relative 
importance in the model: the higher the weight, the greater 

Depth to groundwater Net recharge Aquifer   media

Range (m) A B C Range (mm) A B C Aquifer media A B C

9-15 5 17.76 1.85 <51 1 33.07 2.73 Metamorphic rocks 3 17.96 2.72

4.5-7 8 40.31 4.20 51-71 2 52.368 4.33 Conglomerate 4 25.74 3.89

1.5-4.5 9 79.9 8.33 71-91 3 46.2 3.82 Block sandstone 6 46.91 7.09

<1 .5 10 95.87 10.00 91-117 4 60.53 5.00 Sand 7 49.34 7.46

Sand gravel 8 44.9 6.79

Limestone 9 66.13 10.00

Soil type Topography Impact of the vadose zone

Soil type A B C Range slope 
(%) A B C Geological formation A B C

Clay loam 3 17.72 1.73 >18 1 30.73 2.75 Loam 2 41.25 3.27

Sandy clay 4 28.13 2.74 12-18 3 36.97 3.30 Shale 3 37.83 3.00

Loam 5 29.46 2.87 6-12 5 55.84 4.99 Sandstone 5 52.88 4.19

Sandy Loam 6 41.7 4.07 2-6 9 79.92 7.14 Limestone 6 56.15 4.45

Sand 9 78.51 7.66 0-2 10 111.92 10.00 Igneous rock 7 69.97 5.55

Gravel 10 102.56 10.00 Gritstone 8 91.25 7.23

Conglomerate 9 126.15 10.00

Hydraulic conductivity Land use type Model of groundwater resource yield

Range (m/d) A B C Type A B C Range
(m3/a.km2) A B C

4.1-12.2 2 38.01 3.53 Forest, 
grassland 2 36.7 3.22 <3 2 42.68 3.41

12.2-20.3 3 54.97 5.11 paddy fi eld 4 33.84 2.97 3-5 3 56.69 4.53

20.3-28.5 4 49.67 4.61
Surface 

water,upland 
fi eld

5 65.33 5.73 5-10 5 67.66 5.41

28.5-34.6 5 75.36 7.00 Urban fabric 8 98.95 8.68 10-20 7 114.02 9.11

Industrial 
land 10 114 10.00 20-30 9 125.18 10.00

A: Original rating; B: Mean concentration of NO3-N (mg/L); C: Modifi ed rating value.

Table 3. Original and modifi ed rating values of the DRASTIC-LM parameters.
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its importance. The weights of the parameters in different 
areas may have a different infl uence on groundwater 
vulnerability. For example, aquifer media and the vadose 
zone, which signifi cantly affect the concentration of 
  NO3-N, were assigned low and high weights, respectively. 
However, it is not clear whether this would always apply 
to the study area. The weights for the study area need to 
be determined.

The weights of the model in the earlier sections of this 
paper were obtained from previous research; the next step 
in the DRASTIC-LM model modifi cation is to revise the 
weights for each parameter. This revision is accomplished 
by calculating the correlation between each parameter 
and the mean concentration of NO3-N. The correlation 
was calculated using Pearson’s r. Based on these 
coeffi cients, and after their values were reduced to a scale 
with a maximum value of 5, as defi ned by the model, the 
new weighting factors were calculated. In cases where a 
coeffi cient was statistically signifi cant, the corresponding 
parameter was excluded from the vulnerability equation.

Table 4 shows the Pearson’s r values and the revised 
weighting factors; it is clear that the “topography” and 
“soil type” parameters are not statistically signifi cant and 
should be excluded. The insignifi cant correlation between 
“soil type” and “concentration of NO3-N” reveals that the 
soil type does not infl uence the nitrate concentrations 
in the groundwater. The same conclusion was reached 
by McLay et al. [29] and Lambrakis et al. [46]. The 
insignifi cant correlation between “topography” and 
“concentration of NO3-N” means that small differences 
in topography do not infl uence nitrate concentrations. 
This conclusion is consistent with the fi ndings of Stigter 
et al. [47] and Huan et al. [7]. It can also be seen that 
depth to groundwater, hydraulic conductivity, and land 
use type were not changed. However, net recharge and 
impact of the vadose zone decreased, although they 
remained relatively high. In addition, aquifer media and 
modeled groundwater resource yield were increased; 

their changed weight refl ects their increased importance 
in the evaluation process. The revised weights for depth 
to groundwater, net recharge, aquifer media, hydraulic 
conductivity, impact of the vadose zone, land use type, 
and modeled groundwater resource yield were 5, 3, 4, 3, 
4, 5, and 5, respectively. The new assessment model was 
abbreviated to DRACILM.

After the application of the revised weighting indexes 
and removal of the two non-correlated parameters, the 
DRACILM index (DRI) can be calculated by Eq. (5) as 
follows:

DRI = D * 5 + R * 3 + A * 4 + C * 
3 + I * 4 + L * 5 + M * 5

(5)

…where DRI is the specifi c vulnerability index to 
nitrate. With the application of the above equation, the 
correlation between groundwater vulnerability index 
and the concentration of NO3-N is further increased, 
and Pearson’s r is now 0.649. Fig. 7 shows the results 
of DRI divided into four classes: low, relatively low, 
moderate, and relatively high. The western, eastern, 
and southeastern parts of the plain have a relatively 
high vulnerability class as a result of them being more 
easily polluted because of the shallow groundwater table, 
higher hydraulic conductivity, or increased intensity of 
human activity (industrial and urban land use, modeled 
groundwater resource yield is higher). In isolated areas 
in the western, eastern, and southeastern parts of the 
plain, the vulnerability class is moderate: a result of the 
decreased intensity of human activity compared with the 
relatively high-vulnerability parts. The “relatively low” 
areas are the most widely distributed in the plain; they 
are caused by the deep groundwater table, grassland and 
paddy fi eld land use, and a small resource yield from 
the groundwater model. The scattered low-vulnerability 
areas are mostly found in the northern and central parts; 
the low classifi cation is a result of the smallest intensity 
of human activity, relatively closed environment, and 

Parameter Original 
weights

Pearson’s 
(r) 

correlation

Revised 
weights

 Depth to groundwater 5 0.452 5

Net recharge 4 0.291 3

Aquifer media 3 0.394 4

Soil type 2 0.135 1

Topography 1 0.103 1

Impact of the vadose 
zone 5 0.421 4

Hydraulic conductivity 3 0.342 3

Land use type 5 0.496 5

Model of groundwater 
resource yield 4 0.483 5

Table 4. Correlation coeffi cient values and revised weights.

Fig. 7. Map of specifi c vulnerability based on the modifi ed 
DRACILM model. 
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a deeper water table. Excluding the non-correlated 
natural factors and improving the integration of human 
activity made the result more reasonable and reliable. The 
DRACILM model is  therefore appropriate for assessing 
the groundwater-specifi c vulnerability in the West Liaohe 
Plain.

Selection of the Most Appropriate Model for 
Specifi c Vulnerability to Nitrate

To identify the most appropriate model for groundwater 
vulnerability to nitrate pollution in   the plain, several 
methods were introduced in previous research, such as 
the correlation between groundwater vulnerability classes 
and the concentration of NO3-N, and analysis of F-statistic 
variances. Table 5 summarizes the intrinsic vulnerability 
and specifi c vulnerability correlation coeffi cients 
resulting from the modifi cation and optimization of the 
DRASTIC method using NO3-N data in models such 
as DRASTIC, DRASTIC-LM, optimized DRASTIC-
LM, and DRACILM. A progressive improvement in the 
precision of the intrinsic and specifi c vulnerability is 
accomplished, as expressed by Pearson’s r. From Table 5 it 
can be observed that Pearson’s r between the groundwater 
vulnerability index calculated by the DRACILM model 
and the concentration of NO3-N increased to 0.649, 
which is 40.6% larger than that obtained by DRASTIC. 
The substantial increase in Pearson’s r might be the 
result of several key steps. First, the correlation between 
DRASTIC-LM and nitrate concentrations improved by 
up to 14.3% compared with the original DRASTIC model, 

by adding the effect of human activities to the assessment 
of groundwater vulnerability model. Human activity was 
determined from land use type and modeled groundwater 
resource yield. Second, the correlation between nitrate 
concentrations and optimized DRASTIC-LM increased 
by 27% compared with the original DRASTIC model. 
This was accomplished by revising the rating scales of 
each parameter based on statistical evaluations of nitrate 
concentrations. Third, a further improvement of 40.6% 
was achieved by excluding the parameters that had low 
correlations with nitrate concentrations (i.e., soil, media, 
and topography). The modifi cation of the rating scales 
and the removal of these parameters may be benefi cial for 
groundwater vulnerability assessments for the specifi c 
study area. The resulting ANOVA F-statistic was greater 
than 27.71 when the modifi ed models were compared 
with the original DRASTIC methods, as a result of the 
lower overlap between the mean values of nitrates in the 
different vulnerability classes. The higher the ANOVA 
F-statistic for an assessment method, the higher the 
Pearson’s r. Based on these criteria, DRACILM is the most 
appropriate model for assessing specifi c vulnerability to 
nitrate in the study area. By comparing Figs 2 and 4, we 
can see that the rule linking NO3-N and the groundwater 
vulnerability index is consistent. The concentrations of 
nitrate were divided into fi ve levels, with level 5 being the 
highest. Nitrate concentration levels 5 and 4 correspond 
to relatively high and moderate vulnerability classes, 
respectively; although the intensity of human activities 
is higher in these areas, natural attenuation of pollution 
is slightly improved. Nitrate concentration levels 3 and 

Model Pe arson’s (r)
correlation factor

Step correlation
improvement (%)

Overall correlation
improvement (%)

ANOVA F
Statistic

DRASTIC model 0.243 − − 12.94

DRASTIC-LM model 0.386 14.3 14.3 15.22

Optimized DRASTIC-LM model 0.513 12.7 27 23.68

DRACILM model 0.649 13.6 40.6 27.71

Table 5  . Correlation coeffi cients of the various models.

Parameter Theoretical
weight

Theoretical 
weight (%)

Effective weighting (%)

Min Max Average Standard deviation

Depth to groundwater 5   17.24 4.21 46.16 17.69 2.14

Net recharge 3 10  .34 0.76 31.47 7.16 8.67

Aquifer media 4 13.79 2.53 42.01 15.22 5.52

Impact of the vadose zone 4 13.79 2.72 40.65 10.05 9.43

Hydr  aulic conductivity 3 10.34 1.11 39.27 8.76 7.17

Land use type 5 17.24 5.43 58.66 22.41 3.28

Model of groundwater resource yield 5 17.24 3.89 47.19 18.70 4.31

Table 6. Statistics of the single-parameter sensitivity analysis.
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2 correspond to the relatively low-vulnerability class, 
and level 1 corresponds to the low-vulnerability class; in 
these areas the intensity of human activity is not high, 
but natural protection against pollution is low. Therefore, 
  the specifi c vulnerability class approached the real 
vulnerability conditions and is thus more reasonable and 
reliable. DRACILM is the most appropriate model for 
assessing specifi c vulnerability to nitrate pollution in the 
West Liaohe Plain, and thus the model could be used for 
groundwater protection and management.

Sensitivity Analysis of the Modifi ed 
DRACILM Model

A single-parameter sensitivity analysis allows a 
comparison between effective and theoretical weights 
(Table 6). The effective weight of the DRACILM 
parameters is a function of their theoretical weight 
and their interaction with the six other parameters in 
DRACILM. The effective weight of the DRACILM 
parameters obtained in this study exhibited some 
deviation from the theoretical weights.

Based on the statistics of the single-parameter 
sensitivity analysis (Table 6), the effective weighting 
is between 7.16% and 22.41%, indicating that the seven 
indexes in the vulnerability assessment do not differ 
greatly. The effective weights for L, M, D, and A (22.41%, 
18.70%, 17.69%, and 15.22%, respectively) are higher than 
their theoretical weights (17.24%, 17.24%, 17.24%, and 
13.79%, respectively). The parameters of land use type 
and modeled groundwater resource yield tend to be the 
two most effective parameters in the specifi c vulnerability 
assessment; the statistical results are in agreement with 
the observation that the effect of human activities is the 
main infl uence in the vulnerability assessment. The mean 
effective values of 22.41% and 18.70% are higher than 
others. The effective weights of the I, C, and R parameters 
(10.05%, 8.76%, and 7.16%, respectively) are less than 
their theoretical weights (13.79%, 10.34%, and 10.34%, 
respectively, which have standard deviations of 9.43%, 
7.17%, and 8.67%, respectively). The net recharge and 
hydraulic conductivity have an insignifi cant impact on 
the groundwater vulnerability compared with the other 
six parameters. The value of each effective weighting is 
in accordance with the correlation between concen-
trations of nitrate and the seven parameters, as shown by 
Pearson’s r (Table 4); land use type exhibited the highest 
value and hydraulic conductivity the lowest.

Utilities of Vulnerability Maps for Groundwater 
Protection and Management

The protection and management of groundwater 
resources promote their sustainable use and availability 
for future generations. Assessing groundwater 
vulnerability is essential for protecting and managing 
groundwater resources and the environment   in the West 
Liaohe Plain. Groundwater vulnerability maps can be 
used to help formulate the strategies by   government 

and planners to prevent groundwater resource pollution 
by industry, agriculture, and households.   In general, 
the specifi c   vulnerability assessment maps calculated 
using DRACILM can be considered a combination 
of intrinsic vulnerability assessment and the effect 
of human activities into a simple map. The resulting 
vulnerability maps could assist planners and government 
decision-makers in planning water protection projects or 
establishing management scenarios for water resource 
quality. Emphasis should be placed on relatively high-
vulnerability areas where self-protection of the aquifer is 
not suffi cient to protect water quality. Specifi c measures 
were taken by the central government in its 13th Five 
Year Plan to prevent selective activities polluting 
groundwater resources in highly vulnerable areas. 
DRACILM is the most appropriate model for assessing 
specifi c vulnerability to nitrate pollution for groundwater 
protection and management in the West Liaohe Plain.

Conclusions

The DRASTIC method can provide satisfactory 
results for intrinsic vulnerability assessments. However, 
it is not the best method for accurately assessing specifi c 
vulnerability in the study area. The study area has high 
nitrate concentrations as a result of human activities. To 
address this issue, a method was developed that retained 
the basic structure of DRASTIC, but 1) added parameters 
(land use type, model of groundwater resource yield), 
2) subtracted parameters (topography, soil type), and 
3) modifi ed the parameter ratings and weightings by 
applying data on NO3-N concentrations to the seven 
statistical parameters in an optimization procedure. The 
DRACILM model was developed to assess groundwater 
vulnerability to nitrate pollution in the West Liaohe Plain 
and create vulnerability maps.

The correlation between vulnerability class and the 
concentration of NO3-N in the DRACILM model improved 
to 0.649, which is 40.6% higher than that obtained using 
the DRASTIC model. The ANOVA F-statistic increased 
to 27.71, which indicated the lower overlap between the 
mean values of nitrates in the different vulnerability 
classes. A single-parameter sensitivity analysis revealed 
that the effective weighting is between 7.16% and 22.41%, 
indicating that the seven indexes in the vulnerability 
assessment do not differ greatly. The value for each 
effective weighting accords with the correlations between 
nitrate concentrations and the seven parameters; land 
use type had the highest weighting value and hydraulic 
conductivity the lowest.

The DRACILM model is the most appropriate model 
for assessing specifi c vulnerability to nitrate pollution in 
the West Liaohe plain; the class of specifi c vulnerability 
approached real vulnerability conditions, showing that 
DRACILM produces more reasonable and reliable 
results. The vulnerability maps could assist planners 
and government decision-makers with preliminary 
investigations into planning water protection projects or 
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establishing management scenarios for water resource 
quality. Specifi c measures were taken by the central 
government in its 13th Five-Year Plan to prevent some 
activities from causing groundwater pollution in highly 
vulnerable areas.

Due to the large study area and research fund limits, 
which led to the relatively low precision, our research did 
not include a special study like the fi eld, and the microbial 
samples were not collected, the denitrifi cation cannot 
be determined. Therefore, the limitations of this study 
cannot accurately characterize the chemical process of 
nitrogen and cannot determine the “dynamic” changes 
of the vulnerability. The study that comprehensively 
confi rmed the intrinsic and special vulnerability of the 
West Liaohe Plain lays a solid foundation for future 
research, which can focus on changing nitrogen’s impact 
on the “dynamic” vulnerability.
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